

LA-UR-20-21336

Approved for public release; distribution is unlimited.

Title: Colloidal Semiconductor Nanocrystals: Surface Chemistry, Photonics,

and Electronics

Author(s): Fedin, Igor

Intended for: Invited public research seminar at Rutgers University

Issued: 2020-02-12

Colloidal Semiconductor Nanocrystals: Surface Chemistry, Photonics, and Electronics

Igor Fedin

Research seminar at Rutgers University
Department of Chemistry and Biochemistry

20 February 2020

Acknowledgement

Los Alamos National Laboratory

Chemistry Division
Physical Chemistry and
Advanced Spectroscopy Group

Team of Dr. Victor I. Klimov

The Univerity of Chicago

Department of Chemistry
Group of Prof. Dmitri V. Talapin

Argonne National Laboratory

Center for Nanoscale Materials
Team of Dr. Richard D. Schaller

Introduction: colloidal quantum dots in photonics

Merits of colloidal quantum dots

Quantum confinement

Absorption spectra of CdSe QDs

Solution-processability

Photoluminescence

Electrical conductivity

A field-effect transistor (FET) of QDs

Outline

Synthesis of complex heterostructures

Photonics of CdSe QDs and NPLs: ASE, lasing, and FRET

Colloidal zinc-blende CdSe nanoplatelets

The next thickness of CdSe NPLs

Introduction of water or chloride into the synthesis yields 6 ML CdSe NPLs.

The standard reaction:

 $Cd(CH_3COO)_2 + "H_2Se" \rightarrow CdSe + 2CH_3COOH$

A less favorable reaction:

 $CdCl_2 + "H_2Se" \rightarrow CdSe + 2HCl$

 favors nucleation on the side, and enables formation of thicker NPLs.

W. Cho, S. Kim, I. Coropceanu, V. Srivastava, B. T. Diroll, A. Hazarika, I. Fedin, G. Galli, R. D. Schaller, D. V. Talapin; *Chem. Mater.* **2018**

CdSe nanorings and double rings

Perforation of NPLs upon treatment with Se in oleylamine

First example of quantum multi-rings

I. Fedin and D. V. Talapin; JACS 2016

Zinc-blende crystal structure is preserved

Scale bar: 5 nm

Measured a = 6.1 - 6.2 Å

Perforation in progress

What is the mechanism of perforation?

Amine is necessary in the perforation $RCH_2NH_2 + 2Se \rightarrow RC(Se)NH_2 + H_2Se$

Oleylamine promotes elimination of $Cd(OAc)_2$ as Z-type ligand:

 $[CdSe]_{4n}[Cd(CH_{3}COO)_{2}]_{n}(C_{18}H_{35}NH_{2})_{l} \rightarrow [CdSe]_{4n}[Cd(CH_{3}COO)_{2}]_{n-1}(C_{18}H_{35}NH_{2})_{l-2} + Cd(CH_{3}COO)_{2}(C_{18}H_{35}NH_{2})_{2}$

I. Fedin, D. V. Talapin; *JACS* **2016**, *138* (31), 9771 – 9774

Potential applications: Aharonov-Bohm effect

InAs/GaAs

A. Lorke et al. Phys. Rev. Lett. 2000

A. Govorov et al. Phys. Rev. B 2002

For our CdSe quantum rings:

$$B = \phi_0 / A = 2.068 \cdot 10^{-15} \,\text{Wb} / 2 \cdot 10^{-17} \,\text{m}^2 \approx 100 \,\text{T}$$

50 T to begin observing it

Colloidal atomic layer deposition

A spectroscopically homogeneous ensemble of CdSe/CdS nanoplatelets

Improvements to c-ALD

Swap the stationary and the mobile phases

Complex heterostructures

4CdSe/5CdS/4CdSe/5CdS/4CdSe

We can produce structures of MBE level of complexity.

Compositional grading in QDs

O. Kozlov, Y.-S. Park, J. Roh, I. Fedin, T. Nakotte, Science 2019, 365 (6454), 672 - 675

Compositionally graded CdSe/ZnS QDs

eV

6

eV

Average x = 0.25

Type-I core-shell structure

-1.5

-2.0

-2.5

-3.0

O. Kozlov, Y.-S. Park, J. Roh, I. Fedin, T. Nakotte, Science 2019, 365 (6454), 672 - 675

Radius (nm)

Conduction band

Valence band

Effect of strain on optical properties

Ordinary QD core-shells

Isotropic (hydrostatic) strain

A gradual red shift with a growth of CdS shell

Compositionally graded QDs

 $\varepsilon_{x,v} < \varepsilon_z < 0$ Asymmetric strain

Strain splits light- and heavy-hole excitons.

Nanoplatelet core-shells

Biaxial strain

A giant red shift in NPLs after the deposition of the first layer of CdS

Outline

Need for a tool to probe the synthesis in situ

- monitor a ligand exchange or core-shell growth in situ
- promptly obtain the feedback from the system.
- automate the process

Example from epitaxy: monitoring the deposition of GaAs with RHEED

Appl. Phys. A 1983, 31, 1-8.

Potentiometry

Ref. El.

Measured signal: cell voltage

$$V = V^0 - s \cdot \log c_{S^{2-}}$$

Potentiometric titrations

growth of a complete shell

Merits:

- > fast response
- > sharp equivalence point

I. Fedin, D. V. Talapin; *JACS* **2014**, *136* (32), 11228

Thermodynamics of ligand adsorption

Langmuir adsorption:

non-interacting ligands

$$K_L = \frac{\theta}{(1-\theta)c}$$
 Langmuir isotherm

Frumkin-Fowler-Guggenheim isotherm:

interacting ligands

$$\frac{\theta}{(1-\theta)c} = K_L \exp\left(-\frac{nU_p\theta}{k_BT}\right) = K_L \exp(\beta\theta)$$

$$\log \frac{\theta}{(1-\theta)c} = \log K_L + \frac{1}{\ln 10} \beta \theta$$

 β < 0 means inter-ligand repulsion

0.0

0.2

0.4

8.0

1.0

Kinetics of ligand adsorption

InP QDs + S²⁻: surface coverage

Linear fit: $slope \approx 0.97$ $slope \approx -2.33$

Determining the rate constant

The rate of decay of the concentration of S²-:

$$-\frac{dc}{dt} = k \cdot (c - c_{eq})^n$$

$$\log\left(-\frac{dc}{dt}\right) = \log k + n \cdot \log(c - c_{eq})$$

$$n \approx 0.97$$

$$k \approx 4.7 \cdot 10^{-3} \,\mathrm{s}^{-1}$$

 $t_{\rm 1/2} \approx 150 \, {\rm s}$ when S²- is the limiting agent

Potentiometry in a non-polar medium

Controlled core-shell growth in a non-polar medium

Outline

Overview of photophysics in QDs and NPLs

Auger recombination competes with stimulated emission.

Favorable conditions for energy transfer between NPLs

PL of the thinner NPLs aligns with the second exciton (lh–e) of the thicker NPLs.

Proximity of donor and acceptor NPLs in a hetero-stack

TEM image of heterostacks of 4 ML and 5 ML CdSe NPLs.

FRET from 4 ML to 5 ML CdSe NPLs

Time-resolved PL of a mix of 4 ML and 5 ML CdSe NPLs

Accelerated donor decay Decelerated acceptor decay

Differenced data

Record-low threshold of ASE in CdSe/CdS NPLs

ASE occurs on the red shoulder of PL

ASE threshold: Record-low value of 8 µJ/cm²

Absorbed energy = cross-section × fluence Average # of excitons per NPL = 1.8 at the threshold

Biexcitonic process

C. She,* I. Fedin,* D. S. Dolzhnikov, A. Demortière, R. D. Schaller, M. Pelton, D. V. Talapin; *Nano Lett.* **2014**, *14* (5), 2772-2777 (*equal contribution)

ASE outpaces Auger recombination

PL dynamics of films of CdSe/CdS NPLs by a streak camera

ASE outpaces Auger recombination.

ASE from a film of NPLs

$$E = \frac{\sigma J}{1 + \frac{J}{J_0}}$$
 $J_0 = 800 \frac{\mu J}{\text{cm}^2}$

Saturation fluence is two orders of magnitude higher than ASE threshold.

Measuring modal gain

Record-high modal gain of 600 cm⁻¹

Red, yellow, green, and blue laser action

Lasing disappears when the cavity is destroyed by tilting. ASE persists.

Lasing at 570 nm – a wavelength gap in commercial lasers.

Lower ASE threshold with charging

We expect that charging will lower lasing threshold, but how to handle Auger recombination?

Auger recombination in a negative trion

os Alamos

G. Cragg, A. Efros; Nano Lett. 2010

Suppress Auger recombination through compositional grading.

Record-high biexcitonic and trionic quantum yields

B (inewsity (inewsity)) $\tau_{xx} = 1.5 \text{ ns}$ 1 (inewsity (inewsity)) $\tau_{xx} = 1.5 \text{ ns}$ 1 (inewsity) $\tau_{xx} = 1.5 \text{ ns}$ 1 (inewsity) $\tau_{xx} = 1.5 \text{ ns}$ 1 (inewsity) $\tau_{xx} = 1.5 \text{ ns}$ 20 30 Time(ns)

Dynamics of neutral excitons, negative trions, and biexcitons

PL dynamics of CdSe/ZnS cg-QDs at different excitation powers

$$QY_{X^{-}} = \frac{4.5 \text{ ns}}{15 \text{ ns/2}} = 60\%$$

$$QY_{XX} = \frac{1.5 \text{ ns}}{15 \text{ ns/4}} = 40\%$$

Superior single-dot performance of cg-QDs

Laser action of CdSe/ZnS cg-QDs

Photo-charging CdSe/ZnS QDs with Li superhydride

Laser action from neutral CdSe/ZnS cg-QDs

Charging lowers lasing threshold in CdSe/ZnS QDs to sub-excitonic level.

O. Kozlov, Y.-S. Park, J. Roh, I. Fedin, T. Nakotte, Science 2019, 365 (6454), 672 - 675

Illustration: surface chemistry in QD-sensitized PV

CuInS₂ QDs in mesoporous TiO₂ as the photoanode material in photovoltaics

QD loading determines the performance.

Surface chemistry and inter-ligand interactions determine the photoanode in QD-sensitized solar cells.

J. Du, R. Singh, I. Fedin, A. Fuhr, V. I. Klimov; Nat. Energy (final revision)

Photopatterning

Y. Wang, I.Fedin, H. Zhang, D. V. Talapin, *Science* **2017**, *357* (6349), 385 – 388

Summary

- Quantification of the total active surface area of NCs, and thermodynamics and kinetics of ligand adsorption with potentiometry
- Controlled growth of three shells of CdS over CdSe QDs in a non-polar solvent
- Effect of surface chemistry on dye-sensitized PV performance
- First example of colloidal double and triple rings, and discovery of the mechanism of perforation
- Fast energy transfer from CdSe 512 to CdSe 550 NPLs
- Low ASE threshold in CdSe/CdS NPLs of 8 μJ/cm², and red, yellow, green, and blue lasing
- Sub-excitonic lasing in compositionally graded QDs
- Excellent performance of photo-patterned semiconductors, dielectrics, and metals

Acknowledgement

The Klimov Lab:

Prof. Jaehoon Lim

Dr. Oleg Kozlov

Dr. Youngshin Park

Prof. Jeongkyun Roh

Dr. Jun Du

Prof. Rohan Singh

Dr. Addis Fuhr

Tom Nakotte

The Talapin Lab:

Prof. Sandrine Ithurria-Lhullier

Dr. Chunxing She

Dr. Dmitriy Dolzhnikov

Dr. Yuanyuan Wang

Dr. Abhijit Hazarika

Dr. Patrick D. Cunningham

Dr. Vishwas Srivastava

Wooje Cho

Dr. Igor Coropceanu

Josh Portner

External collaborators:

Prof. Richard D. Schaller

Prof. Matthew Pelton

Prof. Edo Waks

Dr. Xuedan Ma

Prof. John Lupton

